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Fig. 1: Dataset Visualization: We introduce DG16M, a large-scale dual-arm grasp dataset generated using optimization-based force-closure constraints
to ensure stable and physically viable grasps. Our dataset provides high-quality grasp pairs, enabling better generalization for deep learning-based grasp
generation models.

Abstract— Dual-arm robotic grasping is crucial for han-
dling large objects that require stable and coordinated ma-
nipulation. While single-arm grasping has been extensively
studied, datasets tailored for dual-arm settings remain scarce.
We introduce a large-scale dataset of 16 million dual-arm
grasps, evaluated under improved force-closure constraints.
Additionally, we develop a benchmark dataset containing 300
objects with approximately 30,000 grasps, evaluated in a physics
simulation environment, providing a better grasp quality as-
sessment for dual-arm grasp synthesis methods. Finally, we
demonstrate the effectiveness of our dataset by training a
Dual-Arm Grasp Classifier network that outperforms the state-
of-the-art methods by 15%, achieving higher grasp success
rates and improved generalization across objects. Project page:
https://dg16m.github.io/DG-16M/

I. INTRODUCTION

Bimanual manipulation is essential in robotic applications
involving handling large, heavy, or unwieldy objects that a
single robotic arm cannot effectively grasp. Industries such

as automation, logistics, assistive robotics, and assembly fre-
quently require coordinated dual-arm strategies to ensure sta-
ble object handling [1]–[5]. A fundamental step in bimanual
manipulation is establishing stable grasps on the object that
distribute forces evenly, and minimize disturbances across
various environments.

Learning-based grasp planning methods have shown sig-
nificant promise in the single-arm setting, leveraging large-
scale datasets to improve generalization across diverse ob-
jects [6]–[10]. To sample such datasets, traditional analytical
methods are used, that optimize grasp configurations based
on object geometry and contact models, employing force-
closure and wrench analysis to ensure grasp stability [11],
[12]. These approaches identify antipodal contact points,
friction cones, and key stability metrics, such as the Ferrari-
Canny epsilon metric [12], to rank potential grasps.

Despite the availability of large-scale single-arm grasp
datasets, they cannot be directly applied to dual-arm grasp-
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Dataset Grasps per Obj Grasp Label Total Obj Total Grasps Gripper Type
ACRONYM [13] 2000 6-DoF 8872 17.7M Single

DA2 [14] up to 2001 6-DoF 6327 9M Dual

DG16M (ours) up to 4000 6-DoF 4132 16M Dual

TABLE I: Comparison of grasp datasets based on grasp density, labeling method, object count, total grasps, and gripper
types supported.

ing. The primary challenge lies in effectively pairing single-
arm grasps to create stable dual-arm grasp configurations [5].
Unlike single-arm grasping, where stability is primarily
determined by local contact properties, bimanual grasping
requires considering additional constraints, such as object
size, shape, and the coordination between both grippers.
Extending grasp dataset generation to dual-arm settings intro-
duces significant complexity due to these added constraints,
making robust dataset construction and learning frameworks
a challenging task.

Existing dual-arm grasp dataset, DA2 [14], uses a simpli-
fied force-closure formulation that assumes constant normal
forces at the contact points and lacks validation through
physics simulation as shown in figure 3. As a result, the
dataset contains various types of failed grasps. In contrast,
single-arm grasp datasets incorporate physics simulations to
validate grasps, ensuring a higher degree of reliability [13].
Thus, there is a need for a high-quality dual-arm grasp
dataset for the development of data-driven approaches for
bimanual grasping.

To address this challenge, we introduce DG16M, a novel
dataset that integrates a stricter force-closure formulation
which analytically assesses grasp stability while accounting
for varying external forces and gripper constraints. Our
dataset consists of 4,143 objects of varying shapes and sizes
from [14], each with up to 4,000 dual-arm grasp pairs, re-
sulting in a total of approximately 16 million grasps (a small
subset is shown in Figure 1). Furthermore, we introduce
a benchmark dataset containing 300 objects with approxi-
mately 30,000 grasps, verified through physics simulation-
based evaluation using Isaac Gym [15].

To summarize our contributions:

• We introduce DG16M, a large-scale dataset of 16
million dual-arm grasps, incorporating an improved
force-closure validation to ensure physically stable and
reliable grasp assessment. Through both classifier ef-
ficacy and analysis of grasp matrix, we demonstrate
improvement in dual-arm grasp quality vis-à-vis prior
datasets.

• We develop an improved dual-arm grasp classifier lever-
aging neural descriptor fields, demonstrating that train-
ing on grasps vetted by our force-closure formulation
yields higher success rates in simulation compared to
prior methods.

• We introduce a benchmark dataset of 300 objects with
30,000 simulation-verified grasps, providing a standard-
ized evaluation for dual-arm grasping. By incorporating

physics-based validation, our benchmark overcomes the
limitations of force-closure analysis, ensuring a more
practical and robust dual-arm grasp stability assessment.

• We also conduct ablation studies to demonstrate that
sampling techniques like antipodal sampling alone can-
not guarantee stable dual-arm grasp pairs. We show that
these grasp pairs achieve stability only when further
validated through our force-closure analysis.

II. RELATED WORK

A. Grasp generation

Grasp synthesis approaches explore the space of possible
grasp to identify stable and feasible grasps. One widely used
approach is approach-based sampling [16]–[19], which
aligns the gripper’s approach vector with the surface nor-
mal of the sampled object points. This alignment improves
stability by ensuring perpendicular contact. However, it can
introduce bias, potentially overlooking viable grasps that do
not conform to the sampled surface normal [20].

Another common strategy is antipodal sampling [21],
which is extensively used in single-arm grasping datasets
[11], [13], [14], [21]. This method selects opposing contact
points that satisfy force-closure conditions, ensuring a stable
grip, particularly for parallel-jaw grippers. Due to its sim-
plicity and effectiveness, antipodal sampling has become a
standard technique for generating stable grasps. For dual-arm
grasping, we adopt the block antipodal sampling introduced
in [14], as the first step in our grasp generation pipeline due
to its ability to generate feasible contact points efficiently
for large objects. Furthermore, we show in Section (V) that
randomly pairing antipodal grasps is insufficient for stable
dual-arm grasping, highlighting the necessity of force-closure
validation.

B. Force Closure

Force closure is a fundamental property in robotic grasp-
ing, ensuring that an object can be securely held against
external disturbances. A grasp achieves force closure if the
set of contact forces can counteract any external wrench
acting on the object. Traditionally, force closure is computed
by constructing a convex hull over discretized friction cones
in wrench space under the assumption that the total contact
forces sum to one [22], [23]. [24] proposed two relaxations
to the traditional formulation, namely, zero friction and equal
magnitude of contact forces, to make the formulation differ-
entiable. Even though this formulation is useful for a human
hand, the assumptions made pose certain challenges when
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Fig. 2: Overview of the proposed method: (a) We start by sampling a large number of antipodal grasps on the object mesh, generate all possible grasp
pairs, and apply distance-based pruning. These pairs are evaluated using an Optimizer-based Force Closure Evaluator, which checks if a valid set of contact
forces can keep the object in equilibrium under an external wrench. (b) The optimizer solves (2) under constraints (3), (4), enforcing gripper force limits
and friction cone constraints. Valid grasp pairs are identified by thresholding the loss values, as shown in (5), ensuring that only stable grasps are retained
while unstable ones are discarded. (c) We select a subset of objects and evaluate their grasps in simulation to construct the benchmark dataset. This
evaluation provides stability ground truth values for each dual-arm grasp, offering an objective assessment that is independent of predefined grasp quality
metrics or assumptions.

adapting it to a dual-gripper setting [14]. PhyGrasp [25]
uses an optimization-based force closure formulation to
solve for the contact forces. They sample contact points
uniformly across the object without any constraints in order
to find an affordance map, resulting in some of these grasps
being practically infeasible. We propose an optimization-
based constrained force closure formulation that addresses
the issues with using a relaxed [24] or unconstrained [25]
formulation for a dual-gripper setting.

C. Benchmarking Datasets for Grasping

In the field of robotic grasping, the development of
benchmarking datasets has been pivotal for advancing grasp
synthesis and manipulation techniques, with most efforts
focused on single-arm grasping. Several large-scale single-
arm datasets, such as [11], [26]–[29], provide RGB-D images
of objects along with annotated grasps, either in the form
of 6D grasp poses or bounding box markings. In addition,
datasets like [8], [13] focus on synthetic point clouds and
grasp annotations, expanding the range of objects available
for training. While these datasets are extensive and contain
a large number of grasps, they are primarily designed for
small-sized objects, partly due to the physical constraints of
single-arm manipulation. Therefore, they typically use object
meshes from YCB [30] and GSO [31] or specific categories
of ShapeNet [32](e.g. bottle, mug, cup, etc.)

Existing dual-arm grasping datasets are limited, with DA2
[14] being the first large-scale dual-arm grasp dataset, con-
taining approximately 9 million grasps across a wide range
of large objects selected from the ShapeNet dataset [32]
(refer to Table I). While this dataset is extensive, it follows a
relatively relaxed set of force closure constraints that do not
account for actuator constraints, increasing the gap between

the grasps in the dataset and the grasps which are practically
feasible. Conversely, DG16M employs an optimization-based
analytical force closure formulation that can account for the
actuator constraints and provide optimal contact forces that
counteract external wrenches. This results in well-separated
positive and negative grasp pairs, enabling classifiers like
[33] and [34] to learn effectively. Our dataset can readily
be integrated with frameworks such as our previous work
DA-VIL [35] to achieve better inferences.

III. DATASET GENERATION

In this section, we describe the pipeline used to generate
grasps for our DG16M dataset as shown in Figure 2. The
pipeline consists of two key steps: (1) generating grasp
candidates through antipodal sampling, (2) evaluating grasp
quality using an optimization-based force closure formula-
tion.

A. Grasp Sampling

To generate grasp candidates, we employ antipodal grasp
sampling, a method commonly used for grasp pose gen-
eration [11]. The process begins by randomly selecting a
point on the object’s surface along with its corresponding
normal. A second contact point is then found by tracing a
ray within a constrained region around the normal direc-
tion, ensuring that the two contact points satisfy antipodal
conditions. The allowable range for this ray is determined
by a threshold γ = tan(α/2), where α is the cone angle
given by α = tan−1(µ), with µ representing the friction
coefficient. After identifying both contact points, we verify
that the grasp configuration does not result in any collision
between the grippers and the object. Any grasp that leads to
penetration or overlaps with the object is discarded, ensuring
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Fig. 3: Qualitative Comparison between the Existing DA2 Dataset and the Proposed DG16M Dataset We evaluate grasp stability by initializing the
object and floating grippers at the grasp pose with gravity disabled. Once the grippers fully close, gravity is enabled. Grasps from the existing dataset
often fail to hold the object in place (indicated by red dotted arrows) or lose contact due to instability, which arises from issues such as grasp pairs being
too close, positioned on the same side of the center of mass, or lacking force balance. In contrast, our dataset provides more stable and physically viable
grasps, ensuring successful object retention without failures. Floating grippers are shown in white. (Zoom in for a clearer view)

that the final sampled grasps are physically valid and free
of collisions. We initially sample 500 single-arm grasps per
object, which are then combined exhaustively to generate
all possible unique combinations of dual-arm grasp pairs.
To improve diversity and prevent redundancy, we apply a
distance-based pruning step to remove grasp pairs that are
too close to each other. Following this filtering process, we
are left with an average of 30,000 to 80,000 dual-arm grasp
pairs per object. These candidate grasp pairs are then passed
through our Optimizer-based Force Closure framework to
ensure that only physically stable and feasible grasps are
retained.

B. Optimization-based Force Closure Formulation

The quality of the generated set of candidate grasp pairs
is then evaluated by solving the force closure optimization
problem. The goal of this optimization is to determine the
contact forces that can resist an external wrench (wext) acting
on the object at the centre of mass in the object frame, while

satisfying the friction cone constraints and thus obeying force
closure.

The dual-arm setup equipped with two dedicated two-
fingered rigid grippers, results in four contact points on
the object’s surface while grasping. Let the position and
orientation of the contact frame relative to the object frame
be represented as pl/r,i ∈ R3 and Rl/r,i ∈ SO(3), where l/r

represents the left/right grasp and i denotes the ith contact
point of the respective gripper, with i = {1, 2}.

The force applied by the ith contact point on the object
in the contact frame is given by f l/r,i = f tl/r,i

+ fnl/r,i
,

where f tl/r,i
and fnl/r,i

represent the tangential and normal
components of the contact forces, respectively. The grasp
matrix Gl/r,i maps the contact force f l/r,i to the object
frame and is given by

Gl/r,i =

[
Rl/r,i 0

[pl/r,i]×Rl/r,i Rl/r,i

]
·B,

where B = [I3×3 03×3]
T represents the contact basis for



the Point Contact With Friction (PCWF) model [22] and
[pl/r,i]× ∈ R3×3 is the skew-symmetric matrix of the contact
position pl/r,i.

Candidate grasp pairs are validated using a rank test
to ensure grasp feasibility. The grasp matrix G is formed
by concatenating individual contact grasp matrices. Grasp
pairs whose grasp matrix G is not full rank are considered
infeasible, indicating insufficient wrench controllability.

The remaining grasp pairs proceed to the next stage, where
the optimal force distribution is determined by formulating
the force closure optimization problem as a Second-Order
Cone Program (SOCP). The objective function is:

The objective function is:

L =

∥∥∥∥( 2∑
i=1

Gl/r,i · f l/r,i

)
+wext

∥∥∥∥2
2

(1)

The optimization problem is formulated as:

min
f l,1,f l,2,fr,1,fr,2

L, (2)

subject to,

∥f l/r,i∥2 ≤ f high, ∀i ∈ {1, 2} (3)

∥f tl/r,i
∥2 ≤ µfnl/r,i

, ∀i ∈ {1, 2} (4)

Constraint (3) ensures that the contact forces are within
the physical limits of the grippers and f high is the maximum
contact force the gripper can exert.

C. Dual-arm Grasps Selection

The optimization problem is solved using a convex op-
timization solver, CVXPY [36]. The quality of the grasp
is evaluated based on the optimal value of the objective
function, which indicates how well the grasp can resist the
external wrench. We define a grasp to be successful if the
optimization loss satisfies,

L ≤ 10−5 (5)

This threshold ensures that the net wrench on the object is
close to zero, indicating a stable grasp configuration. Grasps
failing to meet this criterion are discarded to maintain dataset
quality. Finally, to construct a reliable and diverse dataset,
we retain successful grasp pairs that satisfy both the rank
condition and the force closure condition per object. This
selection process ensures that only high-quality, physically
feasible grasps are included, making the dataset well-suited
for benchmarking dual-arm grasping algorithms.

The force closure formulation in the existing dataset dif-
fers from our approach in several key aspects. DA2 does not
compute optimal force values explicitly, focusing instead on
generating grasp candidates through antipodal sampling and
evaluating their stability through force closure. In contrast,
our formulation directly incorporates the computation of
optimal contact forces, ensuring that the grasp can resist ex-
ternal disturbances while satisfying friction cone constraints.

Furthermore, our approach explicitly accounts for the physi-
cal limits of gripper forces, making it more practical for real-
world applications where gripper capabilities play a critical
role. By incorporating these constraints, we ensure that the
generated grasps are not only theoretically stable but also
physically feasible, allowing for reliable execution within
the hardware’s operational limits.The superior performance
of classifiers trained on our dataset in physics simulations
further validates the effectiveness of our dataset in enabling
robust and stable dual-arm grasps.

IV. BENCHMARK DATASET CREATION

Benchmarking grasping performance is challenging due to
variations in controllers, grippers, and robotic arms. While it
is practically infeasible to be agnostic to gripper designs, we
ensure that a successful grasp renders the object immovable
under external forces. To establish this benchmark, we define
the essential criteria for grasp stability by ensuring that
the grasp prevents object displacement when subjected to
external disturbances. Notably, grasps that appear successful
based on contact points alone do not always translate into
stable grasps, as they often involve area contact rather than
point contact.

To construct our benchmark dataset, we select 300 objects
from our object list, designating them as part of the unseen
object split. This subset serves as the test set for subsequent
experiments, allowing us to evaluate grasp stability.

We employ the grasp generation technique outlined in Sec-
tion III to generate valid dual-arm grasps for these objects.
These grasps are then evaluated in the Issac Gym simula-
tor [15] using physics-based validation. During evaluation,
the Franka Panda grippers are initialized at the designated
grasp pose with gravity disabled to prevent premature object
displacement. Each gripper can exert a maximum gripping
force of 70N 1. Once the grippers fully close, gravity is
enabled, and forces are applied to stabilize the object. A
grasp is deemed successful if the object remains stationary
under these conditions. Otherwise, it is classified as a failure.

This evaluation process establishes a ground truth dataset,
independent of predefined grasp quality metrics or assump-
tions, providing an objective and practical measure of grasp
success. As a result, we compile a benchmark dataset of
30,000 dual-arm grasps, including their associated objects
and simulation-verified ground truth labels.

V. EXPERIMENTS AND RESULTS

In this section, we present the evaluation metrics for dual-
arm grasps and analyze the performance of our proposed
baselines on the DG16M and DA2 datasets.

Metrics: We evaluate grasps using two complementary
approaches: Force Closure Evaluation (FCE) and Grasp
Success Rate (GSR). These metrics measure the feasibility
and robustness of grasps under static and dynamic conditions,
respectively.

Force Closure Evaluation (FCE): This evaluation is an
analytical method that assesses grasp feasibility through

1Franka Emika Robot’s Instruction Handbook

https://download.franka.de/documents/100010_Product Manual Franka Emika Robot_10.21_EN.pdf


Model
Our Dataset DA2 Dataset

FCE(%)↑ GSR(%)↑ FCE(%)↑ GSR(%)↑
Dual-

PointNetGPD 69.5 61.22 61.8 53.26

CGDF-Classifier 88.73 76.34 65.25 54.33

TABLE II: Performance comparison of different models on
our dataset and DA2 dataset.

force closure analysis. The optimizer computes the required
contact forces at the grasp points, ensuring static equilibrium
while satisfying friction constraints. A grasp is considered
successful if these forces can counteract external distur-
bances and maintain the object’s stability.

Grasp Success Rate (GSR): This evaluation method sim-
ulates real-world grasp execution using floating grippers in
Isaac Gym Simulator [15], as described in Section IV. It
measures not only the theoretical feasibility of grasps but
also their practical stability, ensuring they are viable for real-
world execution.

Baseline methods: To assess the efficacy of our dual-arm
grasping framework, we benchmark it against two baseline
grasp classification methods: (1) We adapt PointNetGPD [34]
to a dual-arm setting as done in [14]. (2) We use SE(3)-aware
grasp diffusion models [33], [37] to give us grasp descriptors
and train a classifier head on the features. We call these two
baselines Dual-PointNetGPD, and CGDF-Classifier.

We use the Dual-PointNetGPD architecture, as described
in [14]. To adapt the original PointNetGPD architecture for
evaluating dual-arm grasps, firstly, the gripper templates are
transformed to their grasp poses using transformation matrix
H ∈ SE(3). To obtain grasp region information, the nearest
512 points from the object point cloud P0 are selected around
each transformed gripper pose, forming two local point cloud
regions, P1, P2. The combined set of sampled points, P =
P1∪P2, serves as a local grasp representation, which is then
passed through the PointNetGPD architecture to extract a
feature vector. This feature vector is subsequently processed
by a Multi-Layer Perceptron (MLP) to classify whether the
grasp is successful or not.

Recent approaches have explored incorporating both ob-
ject geometry and grasp descriptors into the learning process.
For the CGDF-Classifier, we build upon [33] by integrating
a classification head following the vision encoder and feature
encoder outputs, which is based on neural descriptor fields
[38]. The network receives the object point cloud Po ∈
RM×3, consisting of M points, and the gripper template
point cloud Pg ∈ RN×3, consisting of N points. The gripper
templates are transformed into the object’s plane using the
transformation matrix H ∈ SE(3). This design enables the
model to learn both object features and the relative grasp
information within the object’s reference frame. Based on
these feature vectors, the classifier determines whether a
given grasp is successful or not.

Results: As shown in Table II, models trained on our

Generation Technique
Evaluation Metrics

FCE(%) ↑ GSR(%) ↑
Random Dual-Arm Pairs 16.33 23.66
Farthest-Grasp Pairs 26.16 38.45
DG16M (Ours) 100.0 76.33

TABLE III: Ablation study comparing different dual-arm
grasp generation techniques.

dataset consistently outperform those trained on DA2 across
both the metrics. The higher performance of both the models
on our dataset highlights the superior quality of our dataset,
which employs well-defined force closure formulation. This
results in well separated positive and negative grasp pairs,
enabling models to learn more effectively.

A key observation is that models trained on DA2 exhibit
near-random classification performance in simulation, as
indicated by GSR values hovering around 50%. This suggests
that DA2-trained models struggle to reliably distinguish
between successful and failed grasps, classifying them almost
at random. Although DA2 incorporates a structured grasp
stability criterion, its grasp distributions may not transfer ef-
fectively to simulation-based evaluations, potentially limiting
generalization. In contrast, our dataset provides a better grasp
distribution, ensuring that models learn from more stable
and physically meaningful examples. Unlike DA2-trained
models, our models not only achieve high theoretical grasp
feasibility (FCE) but also demonstrate strong performance in
realistic physics simulations (GSR), proving their viability
beyond just theoretical metrics.

Additionally, we observe a slight performance gap be-
tween FCE and GSR, largely due to the challenges of
translating theoretical grasp stability into practical execution
in a simulated environment. Factors such as unmodeled
physical effects, contact dynamics, and complex gripper-
object interactions contribute to this discrepancy.

Further, we validate the quality of our dataset by analyzing

grasp stability, Q(G) =
√
det(GGT ), where G is the grasp

matrix, which quantifies the volume of the grasp wrench
space, reflecting the grasp’s ability to transfer contact forces
into wrenches that stabilize the object [39]. A large Q(G)
indicates a robust grasp with good manipulability, while
a near-zero Q(G) suggests a failing grasp that is close
to a singular configuration and unable to resist external
disturbances. As shown in Figure 4, our dataset (purple
bars) exhibits a clear separation between successful and
failed grasps, with most failures and very few successes
having near-zero determinants. In contrast, the DA2 dataset
(pink bars) shows little distinction between passed and failed
grasps, as its determinant values do not follow the expected
trend. Many successful and failed grasps alike exhibit near-
zero determinants, undermining their reliability as grasp
stability indicators.

Qualitative Results. Figure 3 provides a qualitative com-
parision of grasps generated by models trained on our dataset



Fig. 4: Grasp Stability Analysis. We compute grasp stability using

Q(G) =
√

det(GGT ), which measures the volume of the grasp wrench
space. Our dataset follows the expected trend of having large Q(G) values
for passing grasps while unstable grasps having near-zero Q(G) values.
However, DA2 shows both stable and unstable grasps with similar low
Q(G) values, indicating less manipulable grasps.

versus DA2. For large objects with complex geometries,
models trained on DA2 often detect grasps that fail to
satisfy force closure or dynamic stability conditions. In
contrast models trained on our dataset detect grasps that are
both theoretically feasible and practically executable. DA2-
trained models often produce unsuccessful grasps because
the dataset’s grasp samples frequently fail to secure the object
or maintain contact. This instability arises from factors such
as grasp pairs being too close together, positioned on the
same side of the center of mass, or lacking proper force bal-
ance, all of which compromise grasp stability. These failures
are primarily due to the relaxed force closure condition used
in DA2, which does not account for optimal contact forces
and physical limits of the grippers, leading to infeasible
grasps.

Ablations. Our key design decision in generating dual-arm
grasps is the use of an optimizer-based force closure formu-
lation to select stable grasp pairs from candidate samples.
To evaluate the necessity and effectiveness of this approach,
we conduct ablation studies comparing our grasp selection
method against two alternative strategies. (1) Random Pairing
of Single-Arm Grasps, where single-arm grasps are sampled
and randomly combined to form paired grasps, and (2)
Diametrically Opposite Pairing, where single-arm grasps are
sampled, and the farthest grasps are paired together. The
results are presented in Table III.

1) Random Pairing of Single-Arm Grasps: After sam-
pling grasps through antipodal sampling, random pair-
ing is performed. This naive approach results in a
low FCE of 16.33% and GSR of 23.66%, indicating
that most grasp pairs fail to maintain stability. Since
the pairing is done arbitrarily, the resulting grasps
often lack proper force balance and fail to satisfy
stability constraints, leading to frequent failures in

both theoretical evaluation and simulation tests. This
ablation highlights why merely relying on antipodal
sampling is insufficient and demonstrates the necessity
of incorporating force closure to ensure stable dual-arm
grasps.

2) Pairing Diametrically Opposite Grasps: Ensuring that
grasp pairs are geometrically opposite improves FCE to
26.16% and GSR to 38.45%. While this method guar-
antees spatial separation, it incorrectly assumes that
geometric opposition alone ensures stability. In reality,
it ignores force and torque equilibrium, causing many
grasp pairs to still fail under external disturbances.

3) Force Closure-Based Pairing: Our method, which
explicitly enforces force closure constraints, achieves
100% FCE and a GSR of 76.33%, significantly out-
performing both alternative approaches. By ensuring
that grasp pairs satisfy both spatial separation and
physical stability, our approach produces grasps that
are theoretically stable and also successful in simulated
environments.

The ablation studies validate our force closure approach.
Random pairing lacks physical reasoning, while diametri-
cally opposite pairing improves but remains limited. Force
closure, by incorporating physical constraints, delivers the
best performance, underscoring its importance in dual-arm
grasp generation.

VI. CONCLUSIONS AND FUTURE WORK

We introduced DG16M, a large-scale dual-arm grasp
dataset with 16 million grasps, addressing limitations in
existing datasets like DA2. DG16M enforces force-closure
constraints and incorporates simulation-based validation to
ensure both theoretical and physical grasp stability. Addition-
ally, we provide a benchmark of 30,000 simulation-verified
grasps across 300 objects for robust evaluation.

Deep learning-based grasp classifiers trained on DG16M,
including Dual-PointNetGPD and CGDF-Classifier, achieved
significantly higher Grasp Success Rates (GSR) and Force
Closure Evaluation (FCE) scores than those trained on DA2.
This underscores the importance of structured, high-quality
grasp distributions in improving generalization across diverse
objects and configurations, making DG16M a strong foun-
dation for dual-arm grasping research.

Future work could explore real-world grasp trials with
DG16M to validate its effectiveness beyond simulation.
Additionally, it could investigate adaptive grasping strategies
that dynamically adjust parameters based on object proper-
ties and external disturbances, enhancing the versatility and
reliability of dual-arm robotic systems in real-world tasks.
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